
Deep Learning For Autonomous Driving in Grand
Theft Auto IV

Hyunjun Choi
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

choi797@usc.edu

Manpreet Singh
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

msingh60@usc.edu

Naicih Liou
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

naicihli@usc.edu

Raveena Kshatriya
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

kshatriy@usc.edu

Ritika Chaudhary
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

ritikach@usc.edu

Suyash Kanungo
Viterbi School of Engineering

University of Southern California
Los Angeles, California, USA

skanungo@usc.edu

Abstract—This paper sheds light on our attempt to create an
artificially intelligent bot capable of playing as a driver in GTA
IV and navigate through the environment, avoid hitting other
cars, pedestrians, and road obstacles and reach a destination as
safely as possible. We explored several neural network models for
image classification, like AlexNet [1], InceptionV3 [2], Xception
[3] and ResNet50 [4] and trained those on 200K game play image
data. The results so far are quite encouraging and we observed
that using virtual game environments like GTA is an effective
way to create new data for training and testing of autonomous
driving agents.

Index Terms—Autonomous Vehicles, CNN, Deep Learning

I. INTRODUCTION

Games as an educational tool provide opportunities for
testing out deep learning algorithms, like most games are used
today to test AI controlled bots. Grand Driving Auto is an
effort to create an artificially intelligent agent which can drive
a vehicle in a simulated environment. Near perfect simulation
of the real world can be obtained by using simulators and
games like GTA, for the purpose of this project we chose
the game Grand Theft Auto IV (PC) as our environment and
the aim of the agent is to navigate through the city to reach
a destination as safely as possible. This project will serve
as a proof of concept for research in the field creating and
training autonomous vehicle agents in a secured & simulated
environment before testing these out in the field. The overall
idea is to build a bot that can theoretically drive on the virtual
roads as close to real driving as it can get. This paper goes
through the life cycle of the project in detail, the methods we
followed and talks about the results, analysis & limitations of
the project along with the scope of possible future work in
this field.

PROBLEM DEFINITION

The purpose of this paper is to describe the process of
building a bot that plays as a driver in Grand Theft Auto IV
(GTA-IV) and navigate through the environment to reach a

destination as safely as possible. The bot will try to avoid hit-
ting other cars, pedestrians, and other road obstacles. Various
attributes of the game are described in the following sections.

A. Grand Theft Auto Games

Grand Theft Auto (GTA) is a series of action adventure
games developed and maintained by Rockstar games. Game-
play focuses on an open world where the player can complete
missions to progress an overall story, as well as engage in
various side activities. Most of the gameplay revolves around
driving, shooting missions, and stealing cars. The games in the
Grand Theft Auto series are set in fictional locales modelled
after real-life cities, at various points in time from the early
1960s to the 2010s. The original game’s map encompassed
three cities—Liberty City (based on New York City), San
Andreas (based on San Francisco) and Vice City (based on
Miami).

GTA IV takes place in the fictional Liberty City, based off of
New York City and the surrounding areas including Brooklyn,
Manhattan, The Bronx and New Jersey. The game comprises
shooting missions, driving missions, and story-based missions.
It is an open world game, allowing the player to drive to any
point in the game map at any time. The driving environment
is complex and realistic, involving heavy traffic, pedestrians,
lampposts, city landmarks and bodies of water. The game
recreates several famous New York City streets and landmarks
and is a realistic representation of the city.

Driving in the game is controlled using standard WASD
keys, which will be the labels our model is trying to predict:

• W: Forward
• A: Left
• D: Right
• WA: Accelerate Left
• WD: Accelerate Right
• S: Brake/Reverse
• SA: Reverse Left



• SD: Reverse Right
• NK: No Key
For our model, we added this “No Key” class to give the

possibility of pressing no key. We will train our model to drive
using the first-person view of the street.

B. Purpose

Artificially intelligent bots in a game can be built by
coding rules that impart game intelligence. Most of the tasks
involve driving around the cities using the map for navigation.
Hence, the motivation behind the project. We want to create
an artificially intelligent bot which can drive on its own by
making it learn from humans driving around the game.

Exploring this requires us to play GTA and drive around
town in order to collect data of human players ahead of
training the bot. While playing we record our in-game actions
and decisions which in turn will allow us to train an end-to-end
Deep Learning bot without hard coding the rules.

C. Goal

With growing AI in every sphere and bots being created
to replicate every human action with the same or better
performance level, the urge to do the same for the game
GTA arose. The intent is to create an artificial intelligent bot
which can master driving within the time limit without going
off the road and hitting obstacles. The bot should replicate
the actions performed by a driver using keypress simulation
or even perform better than a human would do. Performing
better would mean reaching a destination in minimum time
without hitting any obstacle. The initial objective is for the
bot to correctly identify lanes on the road and correctly choose
actions depending upon the map to follow (like when to take a
turn, stop, or move right or left). With humans playing, there
is always a chance of making mistakes in a driving game.
The desire is to reduce those cases since the chance of human
error is out of the picture. The GDA bot should eliminate the
situations where humans make mistakes, thus increasing the
accuracy of actions and the efficiency with which a destination
is reached.

II. RELATED WORKS

Research on Autonomous cars have existed long back, but
was seriously considered in the 1980s with the ALVINN
project where neural network was used to map input images
directly [5].

Muller [6], proposed a Convolutional Neural Networks
based off road driving robot, DAVE, that mapped images to
steering angles. Huval [7], described a CNN system that de-
tects vehicles and lane markings for highway driving showing
that CNNs have promise in autonomous driving. Video game
data was used to augment real datasets to provide coverage for
scenarios that were difficult to find data for in the real world
[8].

Car manufacturers and researchers have been working on
autonomous driving for years and significant progress has been
made. Although firms like Google are teaching their software

by physically driving millions of miles in the real world,
they also train their algorithms using pre-recorded footage
of traffic. Computers need hundreds of thousands of labelled
images, showing how to drive, to make them expert vehicle
drivers [7]. Several researchers have used games like GTA and
other simulated environments, Martinez built up a complex
convolutional neural network to make a self driving bot in
GTA V which distance to cars/objects ahead, lane markings,
and driving angle in the game [9].

A. Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a class of deep
learning neural networks. CNNs represent a huge breakthrough
in image recognition. They’re most commonly used to analyze
visual imagery and are frequently working behind the scenes
in image classification. They can be found at the core of
everything from Facebook’s photo tagging to self-driving cars.
They’re working hard behind the scenes in everything from
healthcare to security.

CNNs are distinguished from traditional neural networks
in that they are built up of convolutional layers, which are
a set of learned kernel filters (weights) that are convolved
with regions of an input image to generate a feature map.
This feature map is essentially a summary of features detected
in the input. In a CNN, the output of each convolutional
layer is passed to the next layer, and at each layer higher
level features of the input image are learned. This allows for
learning complex spatial relationships and features in images,
images go through a series of convolutional layers with filters
(Kernels), Pooling, and end in fully connected layers seen
in traditional neural networks to produce output for image
classification or other tasks. In the case of image classification,
a softmax or sigmoid activation function is applied to the
output of the fully connected layers to generate a probability
distribution [10].

A CNN convolves learned features with input data and uses
convolutional layers. This means that this type of network
is ideal for processing images. Compared to other image
classification algorithms, CNNs actually use very little prepro-
cessing. This means that they can learn the filters that have
to be hand-made in other algorithms. CNNs can be used in
tons of applications from image and video recognition, image
classification, and recommender systems to natural language
processing and medical image analysis [11].

B. Image Classification

The goal of image classification is to assign an input image
to one of a predefined set of classes based on what is featured
in the image. Oftentimes image classification is used when
there is one main object featured in the image, but can also
be used when multiple objects are featured. One of the biggest
challenges in image classification is that the subjects can
appear in different positions in the image, be of different
colors, not be completely in the frame, and other variabilities.
The goal is to be able to learn the main distinguishing features
of the objects we are aiming to classify, so that the objects



can be correctly classified no matter what variabilities might
occur. Convolutional Neural Networks are typically used for
this task, we have used state-of-the-art Convolutional Neural
Networks like Alexnet, InceptionXception and Resnet which
have performed extremely well in the ImageNet Challenge.

C. Object Detection

Object detection [12] is a computer vision application where
the goal is to identify and locate numerous objects within an
image or video. Object detection has been widely used for face
detection, vehicle detection, pedestrian counting, web images,
security systems and driver-less cars. Object detection draws
bounding boxes around these detected items, thus allowing us
to locate and perform actions with those objects. In object
detection, the tasks of image classification and localization
are combined. The breakthrough and rapid adoption of deep
learning brought into existence modern and highly accurate
object detection algorithms and methods such as R-CNN, Fast-
RCNN, Faster-RCNN [13].

D. LSTM Models

Long Short-Term Memory (LSTM) networks are used to
classify and make predictions based on time series data. It
has feedback connections which enables it to process entire
sequences of data, like in a video. They are also relatively
insensitive to gap duration as there can be gaps between im-
portant events in real life scenarios of different time duration.
This provides LSTMs an advantage over other RNN layers
and other sequence learning methods. [14]

III. ENVIRONMENTS AND DATA

A. Environments

To create a self driving bot we needed a simulation en-
vironment that provide us ample of real world scenarios
for training data and testing purposes, Games like GTA IV
provide us with very large open world map, and very good
good game physics, while requiring minimum computational
resources thus proving to be the best choice for our simulation
environment.

environment for its open world and GPS feature for navi-
gation. The game also has significantly lower computational
requirements than other versions of GTA allowing us to utilize
computational power on our local machines for data collection,
training and testing purposes.

the whole map of the game had to be unlocked and for
better data collection certain Game mods were used.

a) Lighting Mod: The lighting in the game is poor
compared to other GTA games. Most of the game is very dark,
and in some areas it can be difficult for even a human player
to see the lanes on the road. To make it easier for the model
to learn that it needs to stay within lanes, we install a mod
to improve lighting in the game i.e. G4BP Lighting Overhaul
1.2

b) Trainer Mod: A trainer mod was used, which allows
us to freeze time and weather, spawn cars, and set other player
protections. Using this we can control the environment of the
game as much as possible. Mod settings used to generate the
majority of the training data include preventing the car from
being chased by the police or getting damaged, freezing time
at 12 pm and weather at extra sunny.

B. Data Collection

Data collection is using a script that continuously captures
frames from the game within a 800x600 window along with
the key presses of the human player while driving, taken as
labels, these are the 9 data classes: W, A, S, D, WA, WD, SA,
SD, and NK. 500 such samples are stored as a (image, key)
tuple in a numpy file. So far we’ve collected 200,000 RGB
images for training the models. No external data is used.

(a) training image from random
driving data, “W” (accelerate) class

(b) training image from waypoint
driving data, “WD” (accelerate

right) class

Fig. 1: Training images collected by driving in the game

C. Data Preprocessing

1) Data Resize: Complex CNN architectures being used in
the project were computationally expensive on local machines,
requiring high GPU memory. For efficient memory utilisation
the images were resized to 400x300 to use as input for our
training models.

2) Data Augmentation: The raw data collected from the
game frames, was largely imbalanced having images from
the W and NK class, much more than other classes. To fix
this problem without much effort on human player’s part,
we implemented Data Augmentation where images from the
minority classes were duplicated by transforming the hue,
saturation, and construct. The augmented data was 2 times
the amount of the raw data.

Other data augmentation techniques like flipping, clipping,
and rotation, were not applicable in our case since these
conditions do not occur naturally in the real-world driving.

IV. METHODOLOGY

Our initial approach is to train a Convolutional Neural
Network classifier suited for object detection to predict what
the correct keypress is, given a screenshot from the game while
driving.



Fig. 2: Architecture of AlexNet

A. Model Architecture

The Model training is done in batches, to use the available
memory efficiently and not load the complete dataset which
could exhaust the memory. We use a Script that loads 2500
image samples at a time and creates batches from them.
Training hyperparameters: Number of epochs, Batch size,
Learning Rate, Learning Rate decay rate, Optimizer to use,
Number of files to train on (number of training samples)

Training is carried out on several Models using both pre-
trained models using ImageNet weights and training them
from scratch. On pre-trained models only the fully connected
layers are trained according to our specific task, while Ima-
geNet training weights are used for the other convolutional
layers.

Models we used are as followings:
• CNN - Baseline model with 3 convolution layers + 2 full

connected layers
• AlexNet
• AlexNetV2 - AlexNet + 2 fully connected layers
• InceptionV3
• Xception
• ResNet50
• Time Dependent Models

– LSTM
– ConvLSTM

1) AlexNet: The Architecture consists of eight layers with
learnable parameters: five convolutional layers and three fully
connected layers. AlexNet uses Rectified Linear Units(ReLU)
instead of the tanh function as the activation function in all
layers which provides an advantage in training time. The
activation function used in the output layer is Softmax. It
uses two Dropout layers and a total number of 62.3 million
parameters. “Fig. 2”, Depicts the Architecture of AlexNet.

2) AlexNetV2: This model follows the standard AlexNet
architecture described above, but adds 2 more fully connected
layers with dropout after each layer to the end of the network.
The purpose of this is to simply increase the complexity of
the standard AlexNet architecture, after observing inadequate
performance with the standard AlexNet [15].

3) InceptionV3: Inception V3 is a pre-trained convolutional
neural network model that is 48 layers deep and uses transfer
learning. It is trained on more than a million images from the
ImageNet database and can classify images into 1000 object
categories. As a result of training, the network has learned rich
feature representations for a wide range of images. The model
extracts general features from input images of size 299-by-299
and classifies them based on those features. While building
a new model to classify our data we can reuse the feature
extraction part and just retrain the classification part with our
data.

4) Xception: Xception [3] offers an architecture that is
made of Depthwise Separable Convolution blocks + Max-
pooling all linked with Shortcuts between Convolution blocks
as in ResNet implementations. The data first goes through
the entry flow, then through the middle flow which is re-
peated eight times, and finally through the exit flow. All the
Convolution and Separable Convolution layers are followed
by batch normalization. The specificity of XCeption is that
the Depthwise Convolution is not followed by a Pointwise
Convolution instead the order is reversed.

“Fig. 3”, shows the data first goes through the entry flow,
then through the middle flow which is repeated eight times,
and finally through the exit flow.

5) ResNet: The ResNet-50 has four stages, all ResNet
architectures perform the initial convolution and max-pooling
using 7×7 and 3×3 kernel sizes, then the four stages in the
network start, each stage with 3 Residual blocks containing
multiple layers each. The size of kernels used to perform the
convolution operation in all 3 layers of the block of each stage
are shown in Figure 11. As we progress from one stage to
another, the number of filters is doubled and the feature map
size is reduced to half. Finally there is an average pool and end
it with a fully connected layer containing 1000 nodes and at the
end a softmax function so this gives us a total of 50 layers. The
ResNet-50 has over 23 million trainable parameters. “Fig. 4”,
Detailed architectures for various Residual Nets

6) Object Detection: Object detection in a driving scenario
helps to track various objects such as pedestrians, vehicles,



Fig. 3: The Xception architecture

lanes, and trees. This technique is vital in physical movement
of the car and to track other moving objects such as the traffic
and pedestrians, and make decisions based on the obstacle
present in front.

Faster RCNN with InceptionResnetV2 [16], a pretrained
model from Tensorflow object detection API, was used to
perform Object Detection on the collected game frames, and
the extracted features were passed on to time dependent
models like LSTM, to predict the correct keypress based on
detected obstacles and previous timesteps.

Fig. 4: ResNet Architectures for ImageNet

7) LSTM: A common LSTM unit is composed of a cell,
an input gate, an output gate and a forget gate. LSTM is a
Recurrent Neural Network Architecture that carries informa-
tion as cell state and the flow of information is controlled by
the gates throughout the processing. [14] This model consists
of two LSTM layers with dropout and two fully connected
layers. Each training sample is a sequence of 60 feature vectors
outputted by the object detection model. Label is the keypress
associated with the final feature vector (final screenshot). This
model outputs the keypress.

8) ConvLSTM: A ConvLSTM model is a variant of a
Recurrent Neural Network with convolutional operations in
its LSTM cells for spatio-temporal prediction (which leads to
convolutional structures present in the input-to-state and state-
to-state transitions). The ConvLSTM determines the future
state of a certain cell in the grid by the inputs and past states
of its local neighbors. Unlike traditional LSTM models, it can

capture underlying spatial features which makes it well suited
for image classification tasks. [17] We experiment with this
model in addition to our Object Detection + LSTM model, as
this eliminates the need for an object detection model but still
incorporates time dependencies. The model architecture we
chose consists of three Convolutional LSTM layers with batch
normalization and two fully connected layers. The model takes
50 sequential screenshots as a training sample for input and
the label is the keypress of the last screenshot in the sequence.
The output of the model is the predicted keypress, taking into
account the environment in the last 50 frames.

B. Model Testing

Model testing is the process where the performance of a
fully trained model is evaluated on a testing environment.
Models are tested by a script that takes in the game frames as
input and and passes the pre-processed images as input to the
the trained neural network models. The output of these models
is the predicted keypress for the screenshot. The predicted
keypress is then simulated via a Python script to facilitate
driving the car while the game is running, this involves explicit
checks for behaviors that we expect our model to follow.

1) Biasing Model Predictions: During model testing, we
observe many models moving erratically by trying to turn or
brake too frequently, rather than moving forward most of the
time. To mitigate this effect, we apply a final weight layer to
the model’s probability predictions. By applying lower weights
to turning and braking keys compared to forward keys, we can
ensure that a model only turns when it is very confident in
that prediction. The application of this weight layer also helps
bias the model’s prediction distribution towards a distribution
more similar to a human driver who goes straight most of
the time and occasionally turns or brakes. These weights are
tuned manually for each model while testing in the game.
In the Xception model we see significant improvements in the
model’s control and speed, and much smoother driving overall
when these weights are used.

V. EXPERIMENTAL RESULTS

We recorded and documented the results of training various
different models in the form of accuracy and loss graphs using
TensorBoard while running the training in batches. Further, to
benchmark the performance of various algorithms our plan
is to use some qualitative judgements while observing the
driving pattern of the respective models. These patterns may
be number of collisions with pedestrians, number of collisions
with other vehicles, number of collisions with objects on and
around the road, time needed to reach a destination etc.

A. Training Results

Summarized below are our results of training various dif-
ferent models against their accuracy and loss over the epochs.
Each of these observation is based on training a model on
batch size of 32 (exception one, ResNet50 trained on a batch
size of 16) and a learning rate (lr) of 0.0001.



1) AlexNet: AlexNet was one of initial models that we
started training after setting up the game environment. After
training for 10 epochs, this model plateaus quickly at a
validation accuracy of 44.84% and at a loss of 1.412. We
discontinued training this model and started looking for more
complex versions that can give us better results.

2) AlexNetV2: AlexNet training accuracy and loss
plateaued early, so subsequently we switched to AlexNetV2,
which has two fully connected layers added to standard
AlexNet model. This was done to increase the complexity
of the model and increase the likelihood the network could
model the function for this task. After training it for 14
epochs we reached a training accuracy of 58.5% and 0.8 final
training loss. See Fig. 5 for AlexNetV2 training results.

(a) Accuracy

(b) Loss

Fig. 5: Training results for AlexNetV2

3) InceptionV3: We trained the IncpetionV3 model in par-
allel with AlexNetV2. The InceptionV3 model performed sig-
nificantly better than our previous AlexNet models, achieving
a validation accuracy of 59.77% and a final validation loss of
1.277. See Fig. 6 for InceptionV3 training results.

4) Xception: The Xception model achieved similar results
to the InceptionV3 models in terms of training metrics, but we
observe significantly better performance while testing in game.
After training the model for a total of 13 epochs we were able
to achieve a validation accuracy of 59% and a validation loss
of 1.233. See Fig. 7.

5) ResNet50: ResNet50 is one of the more advanced mod-
els that we experimented with. This model is deeper than
Xception and thus requires more training. As of now for a
batchsize of 16, this model trained for 20 epochs and gave an
accuracy of 62.35%. In the future we plan to train this model
further.

(a) Accuracy

(b) Loss

Fig. 6: Training and validation results for InceptionV3

(a) Accuracy

(b) Loss

Fig. 7: Training and validation results for Xception

6) LSTM: We used an LSTM model to incorporate tem-
poral dependencies when predicting the correct keypress. Our
LSTM model was composed of four LSTM layers and each
was followed by one dropout layer. The training results for 18
epochs is shown in 8. We observe poor performance in terms
of validation accuracy and loss. We were able to achieve a
max validation accuracy of 48.4% and min validation loss of
1.394. We see that the LSTM model combined with object
detection feature vectors did not work well for this task. The
main reason is that for the self-driving task, the position of
road line is important for driving decisions. However, the
object detection model only detects positions of obstacles, so



our model receives no information about where the road is.
Therefore keypresses within the training data corresponding to
attempts to stay on the road or within a lane are not understood
by the model. The other reason is that our data is imbalanced,
which makes the model hard to learn when the environment
is more complicate.

(a) Accuracy

(b) Loss

Fig. 8: Training and validation results for LSTM model after
20 epochs. The orange line shows the training result, and the
blue line shows the validation result.

7) ConvLSTM: In the ConvLSTM model, we observe a
much more steady increase in validation accuracy throughout
training than we have seen in previous models. Validation loss
also seems to steadily decrease for the last 9 epochs, until we
see an increase at the 10th epoch and overfitting begins. We
stop model training at this point. We achieve a max validation
accuracy of 54.5% and a min validation loss of 1.324. Figure
9 shows the training results of this model.

For the in-game evaluation, we define the following metrics
for more quantitative judgements for performance of the
model. We test each model in the same environment (same
duration, destination, lighting, route, car, etc.) and evaluate it
based on these defined metrics.

• Off road – Number of times the car goes onto the
sidewalk

• Back on road – Number of times it comes back on the
road after going off-road

• Collisions – Number of collisions with other vehicles or
walls

• Recovery after collision – Number of times the car
recovers from a collision and continues to drive around
without human intervention

• Random reverses – Number of random reverses

(a) Accuracy

(b) Loss

Fig. 9: Training and validation results for ConvLSTM model
after 20 epochs.

• Random U-turns – Number of random U-turns when there
is no waypoint

• Random turns – Number of random turns while following
a waypoint

• Destination reached – The model reaches the destination
using a waypoint

B. In-Game Model Comparison Summary

• All models are prone to go off road at the current training
levels. However, Xception returns to road the most when
compared to all the other models.

• AlexNet and AlexNetV2 have worst performance in terms
of number of collisions.

• Most trained models did not make any reverses randomly,
however Xception, after recently being trained to reverse
out of accidents, did make some random reverses.

• ResNet model would make the most number of random
turns out of all models.

• No models have been able to navigate to a destination
yet following the directions on the on-screen map. This
might be because the map is too small on the screenshots.

C. Summary of Results

After all the experiments, we observe top training validation
results with the InceptionV3 and Xception model which tells
us that we need a model with a large number of parameters.
We also observe that the improved version of our first model
AlexnetV2 comes next in the list of top training validation
models. It even outperforms our temporal models with time-
frame screenshots. This makes the LSTM and ConvLSTM
the worse performing models out of all these and we can



Metrics Models
for Xception Xception ResNet ResNet AlexNet Alexnet

Evaluation Regular Waypoint Regular Waypoint V2 Regular Waypoint
off road 5 2 5 4 6 6

Back on road 4 1 3 2 4 5
Collisions 5 8 10 12 14 10

Recover from collisions 3 3 4 2 6 4
Random Reverses 2 0 0 0 0 0
Random U Turn 1 1 4 1 1 2
Random Turns 1 2 0 2 0 1

TABLE I: Model Evaluation Results

Models Validation Accuracy Validation Loss
AlexNet 44.84% 1.483

AlexNetV2 55.80% 1.426
InceptionV3 59.32% 1.277

Xception 59% 1.233
Object Detection and LSTM 46.72% 1.535

ConvLSTM 54.50% 1.324

TABLE II: Model performances comparison.

improve these models by incorporating the road position as
a feature in the model. Additionally, we found that Incep-
tionV3 and Xception also both perform better during testing
in game as compared to all other models. They both learn to
avoid some obstacles. However, Xception slightly outperforms
InceptionV3 as it has better control over driving and tries to
stay within the lane. This performance difference might be due
to more efficient use of parameters in the Xception model as
they both have the same number of parameters. The Xception
model also has better control because of an additional biasing
weight layer we added to the model’s predictions.

On the other hand we compared the temporal object de-
tection model and we observed the model recognises objects
but not the road. It turned out that we need features of the
position of the road as well for the model to identify the path
as currently the model drives in any direction. In future we
can add the road position feature along with other objects.

Finally we also experimented with a larger image size of
480x360 as none of our models is able to follow GPS. We
hypothesized that this might be because the map showing
the directions is too small at the current image size. But we
observed the model performance decreases with larger image
size.We see high validation accuracy with the AlexNet model,
but when testing in game we notice very poor performance.
This is likely because of the resolution distortion that occurs
when images are scaled, making it more difficult to delineate
objects on a screenshot.

VI. LIMITATIONS

The methodologies and techniques used in this project are
quite promising, however this system has it’s own set of
limitations. Broadly these limitations can be categorized as
following:

A. Environment related limitations

The limitations of the virtual environment are one of the
key impeding factors in development of an accurate model.

GTA being a commercial game, although provides a great
simulation environment, is not intended for academic and
research purposes. This poses certain challenges, for e.g. the
speed of the car can not be determined and can not be used by
our models for training. Not being able to identify the speed
of the car affects the driving intelligence of the model greatly
especially around turns & corners.

B. Data related limitations

These are the limitations directly associated with the data
collection and data cleanliness. The collected data is unbal-
anced and often times when collecting frames some unclean
data sticks around. This negatively affects the model accuracy
while testing. For e.g. a data set collected for driving the car
during the day will make the agent biased towards driving in
clear broad day light.

C. Resources related limitations

These limitations are attributed to what resources / tech-
nology can we use and how much we can spend. With
large amounts of data, comes the problem of storing and
transferring the data in a safe and fast method. The storage
space requirements are above 90GB and transfer times are low.
Further more, computing these large data sets require GPUs
with very large memories. For e.g. to train the Xception, it
required a GPU with memory above 40GB to run batches of
size 32. Decreasing the batch size slows down the training
significantly and increasing the size requires large resources.
These GPU enabled instances on the cloud are expensive
which therefore limits our ability to try and test the models
properly.

VII. CONCLUSION

From the current results and analysis of the models, it
can be safely concluded that this project serves as a good
proof of concept for autonomous vehicle testing in simulated
environments. Although there are some limitations to what
can be done at the present moment, the project itself has wide
scope for expansion and further research.

VIII. FUTURE WORK

In the future we would like to tap the potential this project
has to become an educational product for the companies that
are trying to step into autonomous vehicle industry. There are
startups like TuSimple, which are trying to build industrial



level AI to drive vehicles based off of a similar approach of
training models in a simulated environment initially. We will
try to reach out to other people and find out solutions to each
of the limitations we faced throughout, one by one and try
to bring the project closer to reality where our trained model
could be used in any any environment and be able to navigate
around with little to no new training at all.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25:1097–1105, 2012.

[2] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[3] François Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1251–1258, 2017.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[5] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural net-
work. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH
PA ARTIFICIAL INTELLIGENCE AND PSYCHOLOGY . . . , 1989.

[6] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-
road obstacle avoidance through end-to-end learning. In Advances in
neural information processing systems, pages 739–746. Citeseer, 2006.

[7] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migi-
matsu, Royce Cheng-Yue, et al. An empirical evaluation of deep learning
on highway driving. arXiv preprint arXiv:1504.01716, 2015.

[8] Why Video Games. Play and learn: Using video games to train computer
vision models.

[9] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex
Yablonski, and Alain Kornhauser. Beyond grand theft auto v for training,
testing and enhancing deep learning in self driving cars. arXiv preprint
arXiv:1712.01397, 2017.

[10] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Ob-
ject recognition with gradient-based learning. In Shape, contour and
grouping in computer vision, pages 319–345. Springer, 1999.

[11] Jason Brownlee. How do convolutional layers work in deep learning
neural networks? Machine Learning Mastery, 2020.

[12] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object
detection with deep learning: A review. IEEE transactions on neural
networks and learning systems, 30(11):3212–3232, 2019.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems, 28:91–99, 2015.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[15] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference on artificial
intelligence, 2017.

[17] Xingjian Shi, Zhourong Chen, Hao Wang, D Yeung, W Wong, and
WC Woo. Convolutional lstm network: A machine learning approach for
precipitation nowcasting. arxiv 2015. arXiv preprint arXiv:1506.04214.


	Introduction
	Grand Theft Auto Games
	Purpose
	Goal

	Related Works
	Convolutional Neural Network (CNN)
	Image Classification
	Object Detection
	LSTM Models

	Environments and Data
	Environments
	Data Collection
	Data Preprocessing
	Data Resize
	Data Augmentation


	Methodology
	Model Architecture
	AlexNet
	AlexNetV2
	InceptionV3
	Xception
	ResNet
	Object Detection
	LSTM
	ConvLSTM

	Model Testing
	Biasing Model Predictions


	Experimental Results
	Training Results
	AlexNet
	AlexNetV2
	InceptionV3
	Xception
	ResNet50
	LSTM
	ConvLSTM

	In-Game Model Comparison Summary
	Summary of Results

	Limitations
	Environment related limitations
	Data related limitations
	Resources related limitations

	Conclusion
	Future Work
	References

